1 9 MAR 1948 # WAYA BETT WILL BE BENDOBUR'N' ORIGINALLY ISSUED May 1945 as Memorandum Report L5D03 A METHOD FOR CORRELATING THE COOLING DATA OF LIQUID-COOLED ENGINES AND ITS APPLICATION TO THE ALLISON V-3420-11 ENGINE By George F. Kinghorn, Albert H. Schroeder, and William K. Hagginbothom, Jr. Langley Memorial Aeronautical Laboratory Langley Field, Va. NACA LIBRARY LANGLEY MEMORIAL AERONAUTICAL LABORATORY Langley Field, Va. WASHINGTON NACA WARTIME REPORTS are reprints of papers originally issued to provide rapid distribution of advance research results to an authorized group requiring them for the war effort. They were previously held under a security status but are now unclassified. Some of these reports were not technically edited. All have been reproduced without change in order to expedite general distribution. MR No. L5003 NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS # MEMORANDUM REPORT for the Army Air Forces, Air Technical Service Command A METHOD FOR CORRELATING THE COOLING DATA OF LIQUID-COOLED ENGINES AND ITS APPLICATION TO THE ALLISON V-3420-11 ENGINE By George F. Kinghorn, Albert H. Schroeder and William K, Hagginbothom, Jr. #### SUMMARY A study has been made of the heat-transfer processes in liquid-cooled engines and an equation has been developed that relates the heat rejection to the coolant and the engine operating conditions. Tests of an Allison V=3420-11 engine have been made to check the accuracy of the equation and to establish the cooling characteristics of the engine. By determining the few constants of the equation, the heat rejection to the coolant may be predicted with good accuracy for any particular engine operating condition. The tests showed that the rate of heat dissipation to the coolant was only slightly affected by either the rate of coolant flow or the relative proportions of ethylene glycol and water composing the coolant mixture. #### INTRODUCTION An analysis has been made of the heat-transfer processes in liquid-cooled engines to determine the effects of the various engine and cooling parameters upon the heat rejection to the coolant. This analysis parallels the analysis of heat-transfer processes in air-cooled engines presented in reference 1. In the analysis of reference 1, equations were developed that relate the cylinder temperatures and the engine operating conditions. These equations have proved very useful in providing a means of completely determining the cooling characteristics of air-cooled engines with a minimum of testing. In the present report somewhat similar equations are developed that give the heat rejection of liquid-cooled engines as a function of the engine operating conditions. Tests of an Allison V-3420-11 24-cylinder, liquid-cooled engine installed in an XB-39 nacelle were made to check the analysis and to determine the heat-rejection characteristics of this engine. The tests were made over a wide range of engine operating conditions. The coolants used were ethylene glycol, water, and two mixtures of ethylene glycol and water. # SYMBOLS - A, A', B, a, b, d, f, m, n constants - cp specific heat of fluid at constant pressure, Btu per pound per OF - opa specific heat of air at constant pressure, Btu per pound per of - specific heat of coolant at constant pressure, Btu per pound per OF - specific heat of combustion gases at constant pressure, Btu per pound per OF - g acceleration due to gravity, feet per second per second - H rate of heat transfer, Btu per second - H_c rate of heat transfer from cylinder walls to coolant, Btu per second - Hg rate of heat transfer from combustion gases to cylinder walls, Btu per second - h surface heat-transfer coefficient, Btu per second per square foot per OF - J mechanical equivalent of heat, foot-pounds per Btu - k thermal conductivity of fluid, Btu per second per square foot per OF through 1 foot | k _o | thermal conductivity of coolant, Btu per second per square foot per of through 1 foot | |-----------------------------|--| | k _g | thermal conductivity of combustion gases, Btu pe
second per square foot per OF through 1 foot | | Z | linear dimension of fluid passageway, feet | | ន | surface area in contact with fluid, square feet | | t _e | average coolant temperature through engine, OF | | tcarb | carburetor-air temperature, ^O F | | t _f | average temperature of fluid, OF | | ^t g | effective gas temperature, OF | | ^t g _o | effective gas temperature for 0° F intake-air temperature, °F | | t _w | average cylinder-wall temperature, OF | | t _w ' | temperature of cylinder wall measured with embedded thermocouples at locations shown in figure 3, of | | V | average velocity of fluid, feet per second | | v_t | impeller tip speed, feet per second | | Wo | coolant flow rate, pounds per second | | We | engine-air flow rate, pounds per hour | | ∆ե _Ծ | blower temperature rise, OF | | ΔT _C | coolant temperature rise through engine, OF | | μ | absolute viscosity of fluid, slugs per second per foot | | μο | absolute viscosity of coolant, slugs per second per foot | | $\mu_{\mathbf{g}}$ | absolute viscosity of combustion gases, slugs per second per foot | | ^ | density of fluid along par subjected | N engine speed, rpm pm manifold pressure, inches of mercury absolute $$z = \frac{1}{A \frac{k_c}{\mu_c} \left(\frac{c_{p_c} \mu_c g}{k_c}\right)^{0.14} w_c^d}$$ F correction factor applied to obtain Z (fig. 9(b)) K_r correction factor for fuel-air ratio (fig. 13) K_N correction factor for engine speed (fig. 13) ### ANALYSIS An understanding of the factors determining the amount of heat rejected to the coolant in a liquid-cooled engine can be obtained from a study of the processes by which heat is transferred from the combustion gases to the cylinder walls and from the cylinder walls to the coolant. It has been shown that nearly all the heat transferred from the combustion gases to the cylinder walls is transferred by forced convection. Heat may be transferred from the cylinder walls to the coolant either by forced convection or, if the temperature of the coolant is sufficiently high, by a combination of forced convection and boiling. Tests have shown that, in general, moderate boiling or vaporization of the coolant in a liquid-cooled engine has little effect upon the over-all rate of heat transfer. Results of tests of an Allison V-1710-81 engine at the NACA Aircraft Engine Research Laboratory, Cleveland, Chio, indicated that reducing the coolant pressure from 30 to 15 pounds per square inch absolute increased the heat transfer not more than about 3 percent, even though in some cases violent boiling occurred. During the present investigation of the Allison V-3420-11 engine, preliminary tests showed that varying the coolant temperature as much as 80° F resulted in a variation in heat transfer approximately equal to that which would be expected for a forced-convection process. Some evidence indicates that with MR No. L5D03 5 very violent boiling, particularly at low coolant flows, the heat transfer is affected to a fairly large degree. For normal engine operation, however, the effect of moderate boiling may be neglected and in the present report the heat to the coolant will be considered to be transferred entirely by forced convection. Dimensional analysis has shown and experiment has verified that for heat transfer by forced convection the Nusselt number $\frac{ht}{k}$ is a function of the Reynolds number $\frac{\rho vt}{\mu}$ and the Prandtl number $\frac{c_p \mu g}{k}$. Test data have indicated that these functions are simple exponential functions for either laminar flow or fully developed turbulent flow; that is, $$\frac{hl}{k} \propto \left(\frac{pvl}{\mu}\right)^m \left(\frac{c_p \mu g}{k}\right)^n \tag{1}$$ where m and n are constant over fairly wide ranges of Reynolds and Prandtl numbers, except in the transition region between laminar and turbulent flow. The rate of heat transfer is given by the relationship $$H = hS(t_f - t_w)$$ (2) where S is the surface area over which the fluid flows and t_f and t_w are the average temperatures of the fluid and wall, respectively. Equations (1) and (2) may be combined to give $$H \propto S_{\overline{l}}^{\underline{k}} \left(\frac{\rho V l}{\mu}\right)^{\underline{m}} \left(\frac{c_p \mu g}{\underline{k}}\right)^{\underline{n}} \left(t_f - t_{\underline{w}}\right) \tag{3}$$ For the heat-transfer process from the combustion gases to the cylinder walls, ι in equation (3) is some representative internal dimension of the cylinder. Since ι and S are constant for a particular engine and since the engine-air flow $\mathbf{W}_{\mathbf{e}}$ is proportional to $\rho\mathbf{V}$, the heat transferred from the combustion gases is $$H_{g} \propto W_{e}^{a} \frac{k_{g}}{\mu_{g}^{a}} \left(\frac{c_{p_{g}}\mu_{g}e}{k_{g}}\right)^{b} \quad (t_{g} - t_{w}) \tag{4}$$ where t_g is the effective temperature of the gases within the cylinder over the entire cycle and the values of k_g , μ_g , and c_{p_g} are also effective values over the entire cycle. It is indicated in reference 1 that the value of the term $\frac{k_g}{\mu_g} \left(\frac{o_{p_g} \mu_g g}{k_g} \right)^b$ does not vary appreciably with changes in engine operating conditions. More recent data on the effect of temperature and fuel-air ratio upon the physical properties of mixtures of fuel and air after compustion (references 2) and 3) indicate that $$\frac{k_g}{\mu_g^2} \left(\frac{c_{p_g}\mu_g g}{k_g}\right)^b$$ may vary appreciably with changes in engine fuel-air ratio. Since t_g is also a function of fuel-air ratio, however, the variations k_{\perp} /on $u_{\perp}g^{(b)}$ of $$\frac{k_g}{\mu_g} \left(\frac{o_{D_g} \mu_g g}{k_g} \right)^b$$ may, to a first approximation, be included in the effective gas temperature. Equation (4) may therefore be written $$H_g \propto W_e^a (t_g - t_w)$$ (5) where tg may
be defined as the temperature that most nearly satisfies equation (5) and is a function of only fuel-air ratio, intake-air temperature, spark timing, and exhaust back pressure. A large number of tests have shown that equation (5) is very accurate for air-cooled engines; this equation may be expected to be equally accurate for liquid-cooled engines. The rate of heat transfer from the cylinder walls to the coolant is, by a similar analysis, $$H_{c} \propto W_{c}^{d} \frac{k_{0}}{\mu_{c}^{d}} \left(\frac{c_{p_{c}}\mu_{c}g}{k_{c}}\right)^{f} \left(t_{w} - t_{c}\right)$$ or $$H_{c} = AW_{c}^{d} \frac{k_{c}}{\mu_{c}^{d}} \left(\frac{c_{p_{c}}\mu_{c}g}{k_{c}}\right)^{f} (t_{w} - t_{c})$$ (6) The value of the term $\frac{k_c}{\mu_c d} \left(\frac{c_{p_c} \mu_c g}{k_c}\right)^r$ in this case depends upon the proportions of ethylene glycol and water used as the coolant and upon the coolant temperature. Because of the heat generated by friction between the piston rings and the cylinder barrels, the cooling of the pistons and barrels by the oil, and the cooling of the exposed surfaces of the cylinder block, the heat transferred from the combustion gases to the cylinder walls H_c is not equal to the heat transferred to the coolant H_c. It is assumed, however, that $$H_{c} \propto H_{g}$$ Therefore, from equation (5), $$H_{c} = BW_{e}^{a} \left(t_{g} - t_{w}\right) \tag{7}$$ or $$t_w = t_g - \frac{H_c}{BW_c}$$ Substituting $t_g - \frac{H_o}{BW_e}$ for t_w in equation (6) yields $$H_{c} = AW_{c}^{d} \frac{k_{c}}{\mu_{c}^{d}} \left(\frac{c_{c}c^{\mu_{c}g}}{k_{c}}\right)^{f} \left(t_{g} - t_{c} - \frac{H_{c}}{BW_{e}^{g}}\right)$$ and $$\frac{t_g - t_o}{H_c} = \frac{1}{BW_e^a} + \frac{1}{A \frac{k_o}{\mu_c^d} \left(\frac{c_{p_c} \mu_c g}{k_c}\right)^T W_c^d}$$ (8) Equation (8) is used in the present report to correlate the data obtained on the V-3420-11 engine. For a single coolant mixture and coolant temperature, the physical properties of the coolant are constant and equation (8) may be rewritten as $$\frac{\mathbf{t_g - t_c}}{\mathbf{H_c}} = \frac{1}{\mathbf{BW_e}^a} + \frac{1}{\mathbf{A'W_c}^d} \tag{9}$$ #### ENGINE AND INSTRUMENTATION The Allison V-3420-11 engine tested is a 24-cylinder, double-vee, liquid-cooled engine, having a normal-power rating of 2100 horsepower at 2600 rpm and a military-power rating of 2600 horsepower at 3000 rpm. The engine has a compression ratio of 6.65:1, a propeller-gear ratio of 3.13:1, and a blower-gear ratio of 6.9:1. The impeller diameter is 10 inches. The engine is equipped with a Bendix-Stromberg PR58B3 carburetor. A view of the engine nacelle as set up for the tests is shown in figure 1. The coolant system for this engine installation had two radiators, one for each half of the engine. The coolant flow from each half of the engine was measured by an annular-orifice flowmeter. A close agreement with these flow measurements was obtained from pitot-static MR No. L5D03 9 flowmeters that measured the flow into the individual cylinder blocks. The coolant temperature rise was measured by three thermocouples across each half of the engine. The hot and cold junctions of these thermocouples were located in the coolant piping near the engine outlet and inlet, respectively. A hand-balanced potentiometer was used to indicate the coolant temperature difference existing between the hot and cold junctions. In general, the coolant temperature rise through the engine is difficult to measure accurately. Some of the difficulty is due to the fact that the over-all temperature difference is small throughout the engine operating range. Limitations in space available for the installation of thermocouples present an additional practical problem. accuracy of the method used in these tests is estimated to be the percent. The temperature of the coolent entering the engine was measured by a resistance thermometer in conjunction with a special microammeter. A sketch of part of the coolant system, which shows the points of flow and temperature measurement for the left half of the engine, is given as figure 2. The instrumentation for the coolant system on the right half of the engine was similar to that shown for the left half. Cylinder temperatures were measured by embedded thermocouples and spark-plug-gasket thermocouples. Embedded thermocouples were located between the intake valves, between the exhaust valves, and in the exhaust spark-plug bosses (as shown in fig. 3) of cylinders 1, 2, 3, 4, 5, and 6 of the left bank and 1, 3, and 6 of each of the other three banks. Cylinder-barrel temperatures were not measured because of the difficulty of installing thermocouples. The carburetor-air temperature was measured by two thermocouples soldered to the carburetor screen. The engine-air flow was measured by a calibrated venturi (fig. 1). Fuel flow was measured by rotameters and a weigh tank. Standard aircraft instruments were used to measure manifold pressure and engine speed. A special mercury U-tube manometer was also used to measure manifold pressure for some of the tests. # METHODS AND TESTS Tests were made with the following four coclant mixtures: (a) 100 percent ethylene glycol (AN-E-2), (b) 80 percent by volume ethylene glycol (AN-E-2) and 20 percent water, (c) 30 percent by volume ethylene glycol (AN-E-2) and 70 percent water, and (d) water. In order to reduce coolant boiling during the tests with the 30-70 mixture and with water, the coolant system was pressurized by applying compressed air to the expansion tank. A sight glass was installed to indicate the coolant level. No appreciable increase in the coolant level was observed during any of the tests - an indication that large vapor pockets did not form. The properties of the coolants were obtained from reference 4. Curves showing these properties for mixtures of pure ethylene glycol and water have been plotted from the data of reference 4 and are presented in figure 4. Ethylene glycol (AN-E-2) was considered to be 97 percent by volume pure ethylene glycol and 3 percent water, with the effect of the inhibitor neglected. The heat rejection to the coolant was determined by use of the following equation: $$H_{c} = W_{c}c_{p_{c}} \Delta T_{c}$$ (10) where ΔT_{c} is the temperature rise of the coolant measured across the engine. The constant f in equation (6) was assumed to equal 0.4 as found by Sherwood and Petrie (reference 5). The constants A and d were determined from a plot of $$\frac{F_{c}}{k_{c}\left(\frac{c_{p_{c}}\mu_{c}g}{k_{c}}\right)^{0.4}(t_{w}-t_{c})}$$ against $W_{\text{c}}/\mu_{\text{c}}$ on logarithmic paper. The term t_{w} - t_{c} was found from the equation $$t_w - t_c = 0.64(t_w' - t_c)$$ (11) where tw' is the average temperature measured by the thermocouples embedded in the cylinder block between the intake valves, between the exhaust valves, and in the exhaust spark-plug bosses. The factor 0.64 was obtained from unpublished data from tests at the Cleveland Laboratory of an Allison V-1710 engine in which temperatures were measured at various other points on the cylinder in addition to those between the valves and in the exhaust spark-plug boss. It was found that equation (11) holds closely for all operating conditions. Inasmuch as the cylinders of the V-3420-11 and V-1710 engines are nearly identical, it may be expected that this relationship is also valid for the V-3420-11 engine. No tests were made to determine the effects of spark timing, exhaust back pressure, or intake-air temperature upon tg. There is no provision on the V-3420-11 engine for varying the spark timing and all the tests were made with normal spark timing. The exhaust back pressure was approximately 30 inches of mercury absolute throughout the tests. The results are not applicable, therefore, at high altitude except for a turbosupercharger installation with the engine operating at high powers. It has been assumed that, as was found for the cylinder head of an air-cooled engine (reference 6), tg increases approximately 0.8° per degree rise in intake-air temperature; that is, $$t_g = t_{g_o} + 0.8(t_{carb} + \Delta t_b)$$ where t_{carb} is the carburetor-air temperature and Δt_b is the blower temperature rise. The blower rise was calculated from the following equation: $$\Delta t_b = \frac{v_t^2}{c_{p_a} Jg}$$ where c_{pa} is the specific heat of air at constant pressure and V_t is the impeller tip speed. For the V-3420-11 engine, this equation may be written *:* _ $$\Delta t_{\rm b} = 0.0000151N^2$$ where N is engine speed in revolutions per minute. In order to determine the actual value of t_{S_0} at a fuel-air ratio of 0.08, tests were made at constant engine operating conditions and varying coolant temperatures. Since, with constant $w_{\rm e}$, $$\propto t_{g_0} + 0.8(t_{carb} + \Delta t_b) - t_w$$ t_{g_0} was found by plotting $t_w - 0.8(t_{carb} + \Delta t_b)$ against H_c and extrapolating the resulting curves to $H_c = 0$ for which $$t_{g_0} = t_w - 0.8(t_{carb} + \Delta t_b)$$ The values of t_w used were obtained from the equation $$t_{w} = \frac{H_{c}}{A \frac{k_{c}}{\mu_{c}} \left(\frac{c_{p_{c}} \mu_{c} g}{k_{c}}\right)^{0.14} W_{c}^{d}} + t_{c}$$ The coolant mixture used for these tests was 100 percent ethylene glycol (AN+E-2). Tests were made at various fuel-air ratios with engine speed and engine-air flow held constant to determine the value of t_{g_0} at fuel-air ratios other than 0.08. With t_c , w_c , and w_e held constant, the value of t_{g_0} could be found for the different fuel-air ratios from the equation $$\frac{\mathbf{t_g} - \mathbf{t_o}}{\mathbf{H_c}} = \mathbf{Constant}$$ The value of the constant was determined from the measured values of t_c and H_c at a fuel-air ratio of 0.08 and the value of $t_{g_0} + 0.8(t_{carb} + \Delta t_b)$ previously determined for a fuel-air ratio of 0.08. Tests were made at various engine speeds, engine powers, and fuel-air ratios with each of the four
coolants. The value of $$\frac{\mathbf{t_g - t_c}}{\mathbf{H_c}} - \frac{1}{\mathbf{A} \cdot \frac{\mathbf{k_c}}{\mu_c^d} \left(\frac{\mathbf{c_{p_c} \mu_c g}}{\mathbf{k_c}}\right)^f \mathbf{w_c}^d}$$ was determined for each test and plotted against $\mathbf{W}_{\mathbf{e}}$ on logarithmic coordinates. # RESULTS AND DISCUSSION $$\frac{\mathbf{H_c}}{\mathbf{k_c} \left(\frac{\mathbf{c_{p_c}} \mu_o \mathbf{g}}{\mathbf{k_c}}\right)^{0.14} (\mathbf{t_w} - \mathbf{t_c})}$$ against W_0/μ_C from which the values of d and A of equations (6) and (8) were determined is shown in figure 5. It may be seen that the slope d of the curve of figure 5 is not constant but decreases with increasing W_0/μ_C , as is usually observed for the transition region between laminar and fully developed turbulent flow. Separate values of d and A were selected from figure 5 for each of the coolants tested. These values are as follows: | Coolant mixt (percent by vo | | | | |-----------------------------|-------|------|--------| | Ethylene glycol (AN-E-2) | Water | đ | A | | 100 | 0 | 0.34 | 309 | | 80 | 20 | .28 | 728 | | 30 | 70 | .17 | 3,750 | | 0 | 100 | .095 | 11,600 | The value of t₈₀ at a fuel-air ratio of 0.08 was determined from the plot shown in figure 6. On an average the data indicate that t₈₀ for the entire cylinder is approximately 700° F. Because of the large extrapolation necessary in figure 6, values of 600° F and 800° F for t₈₀ at a fuel-air ratio of 0.08 were also used in calculating the test data. Closer correlation between the heat rejection to the coolant and the engine operating conditions was obtained by using 700° F than by using either 600° F or 800° F. The data obtained by using 600° F and 800° F are not given in the present report. A value of approximately 900° F for tgo for the entire cylinder of an air-cooled engine was calculated from data given in reference 1 for a Pratt & Whitney R-1340-H cylinder and in reference 6 for a Wright R-1820-G cylinder. The reason for the lower value of for the V-3420-11 cylinder is t_{g_o} 700° F obtained for not entirely understood but this lower value may in part be due to better scavenging of the V-3420-11 cylinder, which has two intake and exhaust valves with a comparatively large valve overlap of 65°. Differences in cylinder construction, compression ratio, or spark timing may also have contributed to the differences in tgo between these engines. The effect of fuel-air ratio upon t_{g_0} is shown in figure 7. Figure δ shows $$\frac{\mathbf{t_g - t_o}}{\mathbf{H_o}} - \frac{1}{\mathbf{A} \frac{\mathbf{k_o}}{\mu_o d} \left(\frac{\mathbf{o_{p_c} \mu_c g}}{\mathbf{k_c}}\right)^{0.4} \mathbf{w_c}^d}$$ plotted against W_e . Some of the scatter in figure 8 can be attributed to the limited accuracy of the method used to measure the coolant temperature rise. The heat-transfer equations obtained from equation (8) and figures δ and 5 are as follows: | Coolant | | | |---|-------|---| | (percent by
Ethylene
glycol
(AN-E-2) | Water | Heat-transfer equation | | 100 | 0 . | $\frac{\frac{t_g - t_o}{H_c}}{309 \frac{k_c}{\mu_o^{0.34}} \left(\frac{c_{p_o} \mu_c g}{k_o}\right)^{0.44} \pi_o^{0.34}} = 135\pi_e^{-0.52}$ | | 80 | 20 | $\frac{\frac{t_g - t_o}{H_o}}{728 \frac{k_c}{\mu_o^{0.28}} \left(\frac{c_{p_o} \mu_o g}{k_c}\right)^{0.14} w_o^{0.28}} = 135 m_e^{-0.52}$ | | 30 | 70 | $\frac{t_{g}-t_{o}}{H_{c}} = \frac{1}{3.750 \cdot \frac{k_{o}}{\mu_{o}^{0.17}} \left(\frac{c_{p_{o}}\mu_{o}g}{k_{o}}\right)^{0.17}} = 135W_{e}^{-0.52}$ | | | 100 | $\frac{\frac{t_g - t_o}{H_o}}{11.600 \frac{k_o}{\mu_o^{0.095}} \left(\frac{c_{p_o} \mu_o g}{k_o}\right)^{0.14} \pi_o^{0.095}} = 135 \pi_o^{-0.52}$ | The values of the second term of these equations $$\frac{1}{A \frac{k_c}{\mu_c^d} \left(\frac{c_{p_c} \mu_c g}{k_c}\right)^{0.4} W_c^d}$$ for various coolant mixtures, coolant temperatures, and coolant flow rates are presented in figure 9. For convenience in the use of these curves, $$\frac{1}{A \frac{k_c}{\mu_c^d} \left(\frac{c_{p_c} \mu_c g}{k_c}\right)^{0.4} \psi_c^d}$$ is denoted by Z in figure 9. The small effect of changes in coolant flow rate and coolant properties upon the engine heat rejection may be seen from the foregoing heat-transfer equations. The value of the term $$\frac{1}{309 \frac{k_{c}}{\mu_{c}^{0.34}} \left(\frac{c_{p_{c}}\mu_{c}g}{k_{c}}\right)^{0.4}} W_{c}^{0.34}$$ for 100 percent ethylene glycol (AN-E-2) at normal power is approximately 0.20, whereas $\frac{t_g-t_c}{H_c}$ is approxi- mately 1.15. An increase in coolant flow W_c of 50 percent results in an increase in heat transfer of only 2.5 percent if other conditions remain constant. A change in coolant to a mixture of 30 percent ethylene glycol (AN-E-2) and 70 percent water results in a value of-- $$\frac{1}{3750 \frac{k_0}{\mu_0^{0.17}} \left(\frac{c_{p_c}\mu_0g}{k_c}\right)^{0.17}} W_0^{0.17}$$ of approximately 0.145, which would cause an increase in heat transfer of about 5 percent. The variation in average cylinder-wall temperature $t_{\rm w}$ with changes in coolant flow rate or coolant properties may be found from the resulting change in $H_{\rm c}$ and from the equation $$H_c = BW_e^a(t_g - t_w)$$ If W_e is constant, $$\mathbf{H_c} \propto \mathbf{t_g} - \mathbf{t_w}$$ Because of the small effect upon the heat rejection of variations in $$\frac{1}{\mathbb{A} \frac{k_{0}}{\mu_{c}^{d}} \left(\frac{c_{p_{c}}\mu_{c}g}{k_{c}}\right)^{0.14} \mathbf{W}_{c}^{d}}$$ with changes in coolant flow rate w_c and average engine coolant temperature t_c , the test data for individual coolant mixtures may be plotted as shown in figure 10. By plotting $\frac{H_C}{t_c}$ against W_e , curves are obtained from which the heat rejection H_C may be determined with only a small sacrifice in accuracy much more easily than from figure S. It was assumed in the analysis that the heat generated by friction between the piston rings and the cylinder barrels has little effect upon the heat rejection to the coolant. Tests were made with constant engine-air consumption at various engine speeds to determine the error involved in the use of this assumption. The data indicated that $$\frac{\mathbf{t_g - t_c}}{\mathbf{H_c}} - \frac{1}{\mathbf{A} \frac{\mathbf{k_c}}{\mu_c^d} \left(\frac{\mathbf{c_{p_c} \mu_c g}}{\mathbf{k_c}}\right)^{0.14} \mathbf{W_c}^d}$$ decreases slightly with increasing engine speed, but an accurate evaluation of this effect was not possible primarily because of the limited accuracy of the method used to measure the coolant temperature rise. In order to relate the cooling characteristics of the engine to variables measured by the usual engine instruments, calibration curves of W_{c} and W_{e} are presented in figures 11 and 12, respectively. Figure 11 shows that the proportions of water and ethylene glycol used for the coolant have little effect upon the rate of coolant flow. If cavitation occurs at the coolant pump inlet, however, the flow may be considerably less than that shown in figure 11. In preparing figure 12, the engine-air flow W_{e} was assumed to be a function of only the engine speed, manifold pressure, exhaust back pressure, and the sum of the absolute carburetor-air temperature and the blower temperature rise $t_{carb} + 460 + \Delta t_{b}.$ Data from the Allison Division of General Motors Corp. indicate that the engine-air flow varies inversely as $\sqrt{t_{carb} + 460} + \Delta t_{b}.$ Curves of $$\frac{w_{e}}{\sqrt{t_{carb} + 460 + \Delta t_{b}}}$$ against engine speed are plotted in figure 12 for various manifold pressures. Throughout the tests, the maximum difference between the measured engine-air flow and the corresponding values given by figure 12 was less than 4 percent. No data were available concerning the effect of exhaust back pressure upon engine-air flow. The variation of brake horsepower with engine operating conditions may be determined from the following empirical relation obtained from the Allison Division: where pm manifold pressure, inches of mercury absolute t_{carb} carburetor-air temperature, ^oF K_N correction factor for engine speed (fig. 13) Kg correction factor for fuel-air ratio (fig. 13) The data obtained during the tests are presented in table I. # APPLICATION Through the use of the curves presented in the present report, the heat rejection to the coolant for the Allison V-3420-11 engine may be determined for any particular engine operating condition. The following example, based on engine operation at military power (2600 bhp at 3000 rpm and a manifold pressure of 44.5 in. of mercury absolute), illustrates the procedure: Typical operating conditions assumed are For engine operation at 3000 rpm and 44.5 inches of mercury absolute, figure 12 indicates that $$\frac{W_e}{\sqrt{t_{carb} + 460 + \Delta t_b}} = 697$$ The blower temperature rise is $$\Delta t_b = \frac{v_t^2}{c_{p_a} J_g}$$ = 0.0000151 n^2 = 0.0000151(3000)² = 135.9° F Solving for the engine-air flow yields $$W_{e} = 697\sqrt{t_{carb} + 460 + \Delta t_{b}}$$ $$= 697\sqrt{80 + 460 + 136}$$ = 18,100 pounds per hour For an engine-air flow of 18,100 pounds per hour (fig. 8), $$\frac{t_{g} - t_{c}}{H_{c}} - \frac{1}{A \frac{k_{c}}{\mu_{c}^{d}} \left(\frac{c_{p_{c}} \mu_{c} g}{k_{c}}\right)^{0.14}} = 0.820$$ In order to determine the value of $$\frac{1}{A \frac{k_c}{\mu_c d} \left(\frac{c_{p_c} \mu_c g}{k_c}\right)^{0.4} w_c^d}$$ it is necessary to know the coolant flow rate $W_{\rm C}$ and the average engine coolant temperature $t_{\rm C}$. From figure 11, $W_{\rm C}=78$ pounds per second at 3000 rpm. It was found during the tests that the average engine coolant temperature was approximately 5° F lower than the coolant temperature out of the engine over a wide range of operating conditions; therefore,
let $t_{\rm C}=245^{\circ}$ F. Then, from figure 9(a), for a coolant mixture of 70 percent by volume ethylene glycol (AN-E-2), a coolant flow rate of 78 pounds per second, and an average engine coolant temperature of 250° F, the term $$\frac{1}{A \frac{k_c}{\mu_c^d} \left(\frac{c_{p_c}\mu_c g}{k_c}\right)^{0.14} w_c^d}$$ denoted by $Z_{(t_c=250)}$ is equal to 0.160. In order to correct this term to the desired value of t_c , 245° F, for the same W_c and coolant mixture, the correction factor F in figure 9(b) is found to be 0.993. Therefore, $$Z = FZ(t_c=250)$$ = 0.993 × 0.160 = 0.159 Then $$\frac{t_g - t_o}{H_o} - 0.159 = 0.820$$ or $$H_{c} = \frac{t_{R} - t_{c}}{0.979}$$ For a fuel-air ratio of 0.095, $t_{g_0} = 649^{\circ}$ F from figure 7. Then $$t_g = t_{g_0} + 0.8(t_{carb} + \Delta t_b)$$ $$= 649 + 0.8(80 + 136)$$ $$= 822^{\circ} F$$ Since $t_c = 245^\circ F$, $$H_{c} = \frac{t_{g} - t_{c}}{0.979}$$ $$= \frac{822 - 245}{0.979}$$ = 589 Btu per second The Allison Division guarantees that the heat rejection to the coolant at military power shall not exceed 608 Btu per second, which is approximately 3 percent above the heat rejection calculated in the preceding example. # CONCLUSIONS As a result of an analysis made of the heat-transfer processes in liquid-cooled engines, an equation has been developed that relates the heat rejection to the coolant and the engine operating conditions. Tests of an Allison MR No. L5D03 23 V-3420-11 engine over a wide range of operating conditions and for several coolant mixtures showed that: - 1. By determining the constants of the equation, the heat rejection to the coolant may be predicted with good accuracy for any particular operating condition. - 2. The rate of coolant flow had only a slight effect upon the rate of heat dissipation to the coolant; also, the effect of the relative proportions of ethylene glycol and water composing the coolant mixture upon the heat-dissipation rate was small. - 3. Changes in engine friction with engine speed had a small effect upon the heat rejection to the coolant; an accurate evaluation of this effect was not made. - h. The effective gas temperature for an entire cylinder of the V-3 $\frac{1}{2}$ O-11 engine was approximately 700° F for a fuel-air ratio of 0.08 and an intake-air temperature of 0° F. Langley Memorial Aeronautical Laboratory National Advisory Committee for Aeronautics Langley Field, Va. # REFERENCES - 1. Pinkel, Benjamin: Heat-Transfer Processes in Air-Cooled Engine Cylinders. NACA Rep. No. 612, 1938. - 2. Tribus, Myron, and Boelter, L. M. K.: An Investigation of Aircraft Heaters. II Properties of Gases. NACA ARR, Oct. 1942. - 3. Pinkel, Benjamin, and Turner, L. Richard: Thermodynamic Data for the Computation of the Performance of Exhaust-Gas Turbines. NACA ARR No. 4B25, 1944. - 4. Cragoe, C. S.: Physical Properties of Aqueous Ethylene Glycol Solutions. Rep. of Phys. Prop. Group, CFR Aviation Fuels Div., Cooperative Res. Council, 1943. - 5. Sherwood, T. W., and Petrie, J. M.: Heat Transmission to Liquids Flowing in Pipes. Ind. and Eng. Chem., vol. 24, no. 7, July 1932, pp. 736-745. - 6. Pinkel, Benjamin, and Ellerbrock, Herman H., Jr.: Correlation of Cooling Data from an Air-Cooled Cylinder and Several Multicylinder Engines. NACA Rep. No. 683, 1940. [Engine serial no. h2-271081; compression ratio, 6.65 to 1; spark timing, intake 28° B.T.C., exhaust 34° B.T.C.; carburstor, Bendix-Stromberg PR58B3; fuel, AN-F-28; oil, AN-VV-0-446, grade 1120] | | | | Carburetor-
air tem-
perature
(°F) | | | | low air | | | | Average | | Cylinder-wall
temperature
(°F) | | | | |--|--|---|---|--|--|---
---|------------|---|--|---|---|--|---|---|--| | Test | Manifold
pressure
(in. Hg
abs.) | Engine
speed
(rpm) | | Barometric
pressure
(in. Hg
abs.) | Fuel
flow
(lb/hr) | Engine-
air flow
(1b/hr) | | system | tem tempera-
ture into
engine | tock Dt =hel | engine | Engine coolant flow (lb/sec) Left Right Total | Embedded
thermo-
souple | Spark-plug-
gasket
thermo-
couple | Engine
heat
rejection
(Btu/sec) | Oil
tempera-
ture into
engine
(OF) | | | | | | | | | | III. Eago, | (-1) | half half Av. | | half half Total | Av. Max. | Av. Max. | <u> </u> | | | | <u></u> | | | , | | C | olant | mixture, | 80 percent | by volume ethyle | ne glycol | | | ·
 | ···· | | | 127456789011274567990122745678901274567990127456799012 | 00000000000000000000000000000000000000 | 1900 1900 1900 1900 1900 1900 1900 1900 | 996777888888888888888888889998804510965557000344667991999555577 | 30.1642233455645323345560005555600055556000555600055560005556000555600055560005556000555600055560005556000555600055560005556000555600055560005000055600055600055600055600055600055600055600055600055600055600005560005560005560005560005560005560005560005560005560005560005560000500005000050000500005000050000050000 | 3594176222LBB04555827743274545454545500872588574665138888566651388885666513888856665138888566651388888 | 7050 7100 7100 7100 7100 71100 71100 71100 71100 16100 1620 16700
16700 | .06736
.067328
.067328
.07997
.07997
.07997
.0801
.0801
.0807
.0801
.0807
.0806
.0807
.0806
.0807
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.0808
.080 | | 207
206
204
212
201
206
206
206
205
205
207 | 10.3 9.9 10.1 10.5 10.3 10.4 10.0 10.6 10.5 10.5 10.4 10.5 10.2 11.2 10.7 10.3 11.6 11.0 11.3 10.5 10.4 11.1 11.5 11.7 11.6 10.6 11.1 11.1 11.5 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11.7 11.0 11.7 11.6 11.6 11.6 11.7 11.0 11.7 11.8 11.9 11.7 11.9 11.0 11.5 11.9 11.0 11.5 11.9 11.0 11.5 11.9 11.0 11.5 11.9 11.0 11.5 11.0 10.5 10.6 11.9 11.5 11.6 11.1 11.5 11.7 11.6 11.6 11.6 11.7 11.8 11.7 11.6 11.6 11.6 11.7 11.8 11.7 11.8 11.8 11.7 11.9 11.1 11.5 11.1 11.5 11.5 | 212
229
229
229
220
220
220
220
210
200
210
209
210
209
210
209
210
209
210
211
212
229
210
211
212
229
210
211
212
229
210
211
212
229
210
211
212
229
210
211
212
229
210
211
211
212
229
210
210
211
212
229
210
210
211
212
229
210
210
210
210
210
210
210
210
210
210 | 21. 4 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 | 159
159
159
159
159
159
159
159
159
159 | 272 297
281 3030
273 3000
273 3000
273 3000
273 3000
273 3000
273 3000
273 297
281 2868
264 2885
264 2885
265 2881
266 218 22776
266 2281
266 2281
267 2681
268 2681
2681
2681
2681
2681
2681
2681
2681 | 5576638998322754817029644822193186155783102252345592235265
557788893223555223559600000000000000000000000000000000000 | 166777766155555555564884422277355577718888880159778241128808115651166555555555555644811662277355577188888811558241128808116651166511665116651166511665116651 | NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS | TABLE I | RESULTS | OF 1 | TESTS (| ON | ALLISON | V-3420-11 | ENGINE - | Continued | |---------|---------|------|---------|----|---------|-----------|----------|-----------| | | | | | | | | D. al | Garlant | | coolant Engine coolan | | | Average | Engine coolant | | | | | er-wall
rature
F) | Engine | 011 | |--|--
--|---|---|---|--|--|------------|---|---|--
---|---|--|---|--|--|--|--|--|---| | Test | Manifold
pressure
(in. Hg
abs.) | Engine
speed
(rpm) | Carburetor-
air tem-
perature
(°F) | Barometric
pressure
(in. Hg
abs.) | Fuel
flow
(lb/hr) | Engine-
air flow
(1b/hr) | Fuel-
air
ratio | aystem | Coolant
tempera-
ture into
engine
(OF) | temp | eratur
(°F)
Right | re rise coolant
tempera-
ture | | () | flow
lb/sec
Right |) | th | edded
ermo-
uple | Spark-plu
gasket
thermo-
couple | Engine heat rejection (Btu/sec) | 011
tempera-
ture into
engine
(OF) | | | | | | | | | | | | half | half | | | half | half | ا | ٨٧. | Max. | Av. Max. | | | | 5545567890012345666890 | 24.1.100.1.2.00.1.0.2.3.3.3.3.2.1.2.1.2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0 | 1500
1710
2590
2490
2250
2150
1105
1300
1005
1200
2200
2200
2200
2200
2200 |
76
77190
8887000
88888888888888888888888888888 | 30.27
30.26
30.15
30.19
30.09
30.06
30.07
30.06
30.07
30.06
30.04
30.04 | 295
403
13001
845
7477
1226
910
4810
1804
5684
5684
5684
5684
5684
5684 | \$250
5500
15280
11190
10100
9310
6680
18100
2860
1100
2710
8710
8710
8700
8700
8700
8700 | 0.0694
.0733
.0983
.0972
.0872
.0876
.0787
.0712
.0867
.0900
.0851
.0907
.0675
.0671
.0676 | | 205
203
205
205
205
205
205
205
205
205
205
205 | 11.9
11.6
10.9
11.0
11.3
11.8
12.1
10.6
7.7
9.1
10.3
11.0
10.3
11.0
10.3 | 10.8
10.1
10.5
10.3
11.1
9.3
11.0
9.3
11.1
12.5 | 11.9
10.5
10.7
10.8
11.4
11.7
9.2
10.8
11.0
11.1
11.0
11.1
11.0
10.2 | 211
211
209
210
209
210
210
210
211
209
211
209
211
209
209
210
209
209 | 192.35.66.67.62.77.76.66.66.44.63.77.76.66.66.44.69.66 | 17.50
20.21
20.21
27.51
22.26
111.60
113.60
113.60
113.60
113.60
27.26
26.89
26.89
26.89 | 92871846614966666666666666666666666666666666 | 3355476
3255
3555
3556
3556
3556
3556
3556
355 | 374
393
439
4431
4520
307
2324
415
415
415
415
417
411 | 261 288
261 299
282 313
281 523
279 3310
278 330
277 2257
219 241
230 227
267 332
279 336
279 336
279 322
279 222
272 282
283 287 | 3555
5555
4769
4115
2571
267
4416
4416
4416
4416
4416
4416
4416
44 | 161
165
165
165
165
165
167
167
160
162
163
163
164
179 | | | | | | | | Co | | mixture, 1 | 00 percent | by v | ٠ | ethyle | ne glycol | | | | L | ٠ <u>. </u> | <u> </u> | | | | 71
72
74
76
778
798
80
81
82
84
85
86
87
90
91
92
93
99
90
100
101
102
103 | 37.00
35.11
32.11
30.11
30.10
30.00
17.00
18.00
17.00
18.00
17.00
18.00
17.00
18.00
17.00
18.00
17.00
18.00
17.00
18.00
17.00
18.00
17.00
18.00
17.00
18.00
17.00
18.00
17.00
18.00
17.00
18.00
17.00
18.00
17.00
18.00
17.00
18.00
17.00
18.00
17.00
18.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19.00
19 | 2600
2100
21700
2150
2000
2000
2000
2000
2600
1200
2500
1200
2200
1200
2200
1200
2200
1200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200 | 8449142244244400333784477536523309133366 | 29.75
29.774
29.774
29.774
29.775
29.775
29.886
29.98
29.98
29.98
29.98
29.98
29.98
29.98
29.98
29.98
29.98
29.98
29.98
30.19
30.02
29.886
29.98
30.20
29.886
30.20
29.886
30.20 | 1258
1058
1058
1059
1059
1059
1059
1059
1059
1059
1059 | 13110
13510
15430
3780
9280
7970
7970
10010
1650
1640
1650
13430
107940
1120
12210
2310
6260
6270
6260
6270
6260
6270
6260
9440 | 0919
0707
0707
0707
0690
0708
0692
0809
0809
0809
0809
0716
0716
0716
0716
0716
0716
0716
0716 | | 186
2016
2016
2014
2014
2017
2014
2017
2017
2017
2017
2017
2017
2017
2017 | 12.1
13.2
12.1
12.3
12.7
12.7
12.7
11.8
13.6
12.7
10.2
11.1
12.0
9.9
9.9
9.8
10.1
10.1
11.1
11.9
10.1
11.9
11.1
11.9
11.9 |
12.40
111.55
10.68
13.84
10.99
110.99
13.84
19.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.99
10.90
10.90
10.90
10.90
10.90
10.90
10.90
10.90
10.90
10.90
10.9 | 11. 8
11. 8
12. 0
12. 0
12. 0
12. 5
12. 5
12. 5
12. 5
12. 5
10. 9
11. 4
12. 5
10. 9
11. 4
12. 5
10. 9
9. 1
11. 6
12. 7
10. 0
10. 0
1 | 210
2210
2211
2211
2212
2211
222
210
2210
2209
2208
2211
207
208
210
209
212
212
212
212
212
212
212
213
210
209
211
209
209
211
212
212
212
212
213
214
215
216
217
209
209
209
209
209
210
210
210
209
209
209
209
209
209
209
209
209
20 | 26.4
22.1
19.4
19.3 | 28.54.94.10.10.77.10.10.77.10.10.77.10.10.77.10.10.77.10.10.77.10.10.77.10.10.77.10.10.77.10.10.77.10.10.10.70.10.10.10.10.10.10.10.10.10.10.10.10.10 | 61.18.51.03.88.86.51.56.52.1.56.1.17.85.1.17.86.1.17.17.86.1.17.86.1.17.86.1.17.86.1.17.86.1.17.86.1.17.86.1.17.86.1.17.86.1.17.86.1.17.86.1.17.86.1.17.86.1.17.86.1.17.86.1.17.86.1.1 | 5557479657722
25557479657722
255575127
265575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
2557517
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
2557517
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
25575127
2 | 463
463
452
388
452
452
453
453
453
302
531
302
531
302
531
302
531
531
531
531
531
531
531
531
531
531 | 366
366
363
361
367
367
367
367
367
367
367
367 | 467
467
4681
4495
44168
421
470
470
470
470
470
470
470
470
470
470 | 166
1654
1765
1645
1659
1659
1758
1664
1659
1664
1659
1659
1659
1659
1659
1659
1659
1659 | | | | | | | | | Fuel- Coolant Engine coolant Engine | | | | | | r-wall
ature | | | | | | | | | |---|--|---|--|---
--|---|--|--|---|---|--|--|---|--|--|---|---|---|--|---|---| | Test | Manifold
pressure
(in. Hg
abs.) | Engine
speed
(rpm) | Carburetor-
air tem-
perature
(OF) | Barometric
pressure
(in. Hg
abs.) | Fuel
flow
(lb/hr) | Engine-
air flow
(1b/hr) | Fuel-
air
ratio | Coolant-
system
pressure
(1b/sq | Coclant
tempers-
ture into
engine | | | lant
e rise | engine
coolant
tempera- | 1 | flow (1b/sec) | | Embedded
thermo- | | Spark-plug
gasket
thermo- | Engine heat rejection (Btu/sec) | Oil
tempera-
ture into
engine
(°F) | | | | | , ., | | | | | in. gage) | engine
(°F) | Left
half | Pight
half | Av. | (°F) | Left
half | Right
half | Total | Av. 3 | \rightarrow | Av. Max. | ┤ | (°F) | | - | Coolant, water | | | | | | | | | | | | | <u> </u> | | | | | | | | | 105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121 | 22.1
26.1
28.0
17.0
30.0
34.1
360.0
31.1
360.0
31.1
24.1
24.1 | 1600
2000
2205
1200
2400
1400
2400
2400
2500
2000
2000
1800
1800
1805
1805 | 82
861
933
931
96
903
854
87
888
888
94 | 30.15
30.18
30.18
30.17
30.11
30.18
30.18
30.18
30.18
30.18
30.18 | 280
475
576
161
123
712
214
1037
1260
692
692
691
432
432
432 | 3830
6480
79940
12900
93030
10880
11140
8040
8040
8050
8050
8050
8050 | 0.0751
.07521
.07521
.0854
.0756
.0756
.0756
.0951
.0866
.0866
.0866
.0852 | 10
5
14
13
 | 178
176
176
178
177
181
178
192
195
195
187
176
186
186
195
202 | 8588247129778852887777888528877 | 77887667777777 | 88876887778887777 | 182
180
180
182
181
185
182
198
199
199
191
180
182
199
206 | 21.3
26.9
30.0
15.8
12.9
33.7
18.4
37.8
27.3
27.3
27.2
24.1
24.1
24.1
24.3 | 29.8 | 412.830.055.12.80.07.56.72
65.33.26.66.72 | 7890760 0 5755 5755 5755 5755 5755 5755 575 | 55
47
119
122
128 | 211 230
223 245
229 248
202 216
195 207
201 220
210 262
210 263
236 258
237 259
230 249
220 241
211 233
217 237
225 242
236 248 | 34518
4518
522716
5203
1720
5493
14368
4266
5555
5555 | 169
166
172
172
163
165
170
161
161
163
163
161
165
160 | | | Coolant mixture, 30 percent by volume ethylene glycol (AN-E-2) | | | | | | | | | | | | L | | | | | | | | | | 122
123
124
126
126
127
126
130
131
132
133
134
135
136
139
141 | 20.0
20.0
20.0
32.1
34.1
36.0
28.1
21.0
24.2
26.1
30.0
30.1
30.1
30.1
18.0
22.0 | 11:00
11:00
12:00
26:00
25:00
25:00
18:00
18:00
18:00
21:00
21:00
21:00
21:00
21:00
18:00 | 92
933
812
807
725
557
22
88
87
725
88
88
88
88
88
88
88
88
88
88
88
88
88 | 30.08
30.07
30.17
30.18
30.19
30.18
30.19
30.19
30.10
30.11
30.17
30.10
30.11
30.11
30.11
30.11
30.11 | 213
212
940
940
1618
1280
600
359
360
468
768
765
765
765
745
745 |
2800
2800
10910
11110
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
112340
1 | .0761
.0757
.0861
.0865
.0968
.0762
.0721
.0726
.0759
.0810
.0810
.0810
.0810 | L | 177
195
195
195
196
196
196
196
197
212
177
195
213
196
194
195
195 | 9858 90 99 98 99 88 88 7 6 | CO C | 962090786411436589 | 181
199
217
200
199
200
200
200
200
216
182
200
182
217
200
199
199 | L | 33.6.7.2.9.8.2.3.3.9.5.0.7.5.6.1.5.7.2.2.2.2.3.3.3.0.9.4.1.5.7.1.5.7.2.2.2.2.3.3.3.3.3.2.4.1.5.7.2.2.2.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3 | 98768167233565719563
334937766662346341904
44566341904 | 245 2 5 3 5 3 5 3 5 5 5 5 5 5 5 5 5 5 5 5 | 288
304
318
398
398
398
372 | 210 250
22h 2hu
2ho 260
2h7 27h
2h8 278
2h7 277
2h1 270
2h1 270
2h2 267 | 287
278
2766
5127
5512
5512
3664
2172
3664
149
501
509
506
217 | 161
165
166
165
155
155
160
161
165
165
165
165
165
165
165
165
165 | | | | | | | | | | mixture, | | t by | volume | ethyl | ene glyco | | -E-2) | 1 2 | | | | | · | | 142
143
144
145
146
149
150
151
152
153
155
156 | 0.0.50.00 5.00 5.00 5.00 5.00 5.00 5.00 | 2200
2200
2200
2200
2200
1800
1800
1800 | 73
775
776
777
775
775
778
779
813 | 30.28
30.28
30.30
30.30
30.39
30.28
30.28
30.16
30.11
30.11
30.11 | 6722
6722
6722
6726
6735
500
500
550
550
550
555
555
555
555
5 | 83970
83370
83370
83340
63310
63270
10100
103370
10350 | 0.0801
.0801
.0803
.0805
.0806
.0802
.0802
.0809
.0807
.0805
.0805
.0805 | >5 to 15< | 208
2468
1851
2311
1868
247
2709
1911
2319
268 | 11.0
9.6
12.6
11.9
11.3
11.9
10.5
11.7
13.3
11.6
10.6 | 8.7
10.4
9.5
11.3
9.8
11.4
10.6
9.6 | 10.6
9.1
10.6
10.4
11.6
9.7
10.3
12.4
11.2
12.0
10.7 | 213
252
272
191
236
236
195
272
252
183
214
197
254
273 | 29.76.3.48
29.96.23.79.0
29.97.90
23.97.90
23.5.4.5.7.51
32.7.51 | 26.0
26.4
21.5
20.9
21.7
21.6
20.8
29.3 | 26.1 42.46.66.3.77.53.8
55.54.45.66.3.77.53.8
61.22.96.66.3.77.53.8 | | | | 3841
4020
3318
3311
33560
4854
45450 | | MR Figure 1.- Engine-nacelle test setup for cooling tests of the Allison V-3420-l1 engine. Figure 2.-Location of coolant flowmeter and thermocouples for left half of engine. Figure 3.- Location of embedded thermocouples in cylinder wall. (a) Specific heat. (b) Thermal conductivity. Figure 4.- Physical properties of mixtures of pure ethylene glycol and water. (From reference 4.) Percent by volume ethylene glycol (c) Absolute viscosity. Figure 4.- Concluded. Figure 5.- The effect of W_c/μ_c on the rate of heat transfer from the cylinder walls to the coolant. Figure 6.- The variation of the heat transfer from the cylinder walls to the coolant with the average cylinder-wall temperature; fuel-air ratio, 0.08. Figure 7.- The variation of t_{g_0} with fuel-air ratio. Figure 8.- Heat-rejection characteristics of the Allison V-3420-11 engine. Percent by volume ethylene glycol (AN-E-2) (a) Values of Z for an average engine coolant temperature of 250° F. Percent by volume ethylene glycol (AN-E-2) (b) Correction factor to be applied to Z_(t_c=250) to obtain Z for average engine coolant temperatures other than 250° F. Figure 9.- Curves for determining Z or $\frac{1}{\frac{k_c}{\mu_c d} \binom{c_{p_c} \mu_c g}{k_c}^{0 - l_t}} \text{ for various}$ coolant mixtures, average engine coolant temperatures, and coolant flow rates. Z = FZ(t_o=250)* Figure 10.- The effect of engine-air flow on the heat rejection to the coolant for each of the coolant mixtures used in the tests. Effect of variation in coolant temperature on coolant properties neglected. Figure 11.- The effect of engine speed on the coolant flow rate for various coolant mixtures. Figure 12.- Variation of engine-air flow with engine operating conditions. Exhaust back pressure, 30 inches of mercury absolute. (a) Variation of Kp with fuel-air ratio. (b) Variation of K_N with engine speed. Figure 13.- Correction factors used to calculate the brake horsepower for the Allison V-3420-11 engine. Brake horsepower = $\begin{bmatrix} & p_m & \\ & & \\ 1 + & \frac{t_{oarb} - 80}{10} & (0.01) \end{bmatrix}^{\frac{K_N}{K_F}} - 700.$ 3 1176 01354 4342